Counting Statistics

Sources of Error

- Systematic errors
- Consistently get the same error
- Random errors
- Radiation emission and detection are random processes
- Blunder
- operator error

Measures of Central Tendency

- Mean
- Average value
- Median
- Middlemost measurement (or value)
- Less affected by outliers

Example: 8, 14, 5, 9, 12
Mean = 9.6
Median = 9

Measures of Variability

- Variance
- Measure of variability:

$$
\sigma^{2}=\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\ldots+\left(x_{N}-\bar{x}\right)^{2}}{N-1}
$$

- Standard deviation
- Square root of variance

$$
\sigma=\sqrt{\sigma^{2}}
$$

Statistical Models for random trials

- Binomial Distribution
- Poisson Distribution
- Simplification of binomial distribution with certain constraints
- Gaussian or Normal Distribution
- Further simplification if average number of successes is large (e.g., >20)

Binomial process

- Trial can have only two outcomes

Toss of a coin
Toss of a die
Observation of a radioactive
nucleus for a time " t "
Observation of a detector of
efficiency E placed near a
radioactive nucleus for a time " t "
Source: Adapted from Knoll, GF. Radiation detection and measurement, 3rd ed. New York: John Wiley, 2000.

Binomial probability density function (PDF)

$$
P(x)=\frac{N!}{x!(N-x)!} p^{x}(1-p)^{N-x}
$$

- N is total number of trials
- p is probability of success
- x is number of successes

FIGURE 20-28. Binomial probability distribution function when the probability of a success in a single trial (p) is $1 / 3$ and the number of trials (N) is 10.

Binomial probability density function mean and variance

$$
\bar{x}=p N \quad \text { and } \quad \sigma=\sqrt{p N(1-p)}
$$

- N is total number of trials
- p is probability of success
- \bar{x} is mean, σ is standard deviation

If p is very small and a constant then:

$$
\sigma=\sqrt{p N(1-p)} \approx \sqrt{p N}=\sqrt{\overline{\mathrm{x}}}
$$

Same as Poisson random process.

Poisson PDF

- Radioactive decay and detection are Poisson random processes
- Observation time is short compared to the half-life of the source
- probability of radioactive decays (i.e., p)remains constant
- probability of a given nucleus undergoing decay is small
- Variance
- Variance $=$ mean $=\mathrm{pN}=\overline{\mathrm{x}}$
- Standard deviation
- Standard deviation $=\sqrt{\text { variance }}=\sqrt{\mathrm{pN}}=\sqrt{\overline{\mathrm{x}}}$
- Can estimate standard deviation from a single measurement

Confidence Intervals

Interval about measurement	Probability that mean is within interval (\%)
$\pm 0.674 \sigma$	50.0
$\pm 1.0 \sigma$	68.3
$\pm 1.64 \sigma$	90.0
$\pm 1.96 \sigma$	95.0
$\pm 2.58 \sigma$	99.0
$\pm 3.0 \sigma$	99.7

Raphex Question

D70. How many counts must be collected in an instrument with zero background to obtain an error limit of 1% with a confidence interval of 95% ?
A. 1000
B. 3162
C. 10,000
D. 40,000
E. 100,000

Raphex Answer

D70. How many counts must be collected in an instrument with zero background to obtain an error limit of 1% with a confidence interval of 95% ?
D. A 95% confidence interval means the counts must fall within two standard deviations (SD) of the mean (N). Error limit $=1 \%=2 S D / N$, but SD $=N^{1 / 2}$. Thus $0.01=2\left(\mathrm{~N}^{1 / 2}\right) / \mathrm{N}=2 / \mathrm{N}^{1 / 2}$. Where $[0.01]^{2}=4 / \mathrm{N}$ and $\mathrm{N}=40,000$.

Propagation of Error

Description	Operation	Standard Deviation
Multiplication of a number with random error by a number without random error	cx	$\mathrm{c} \mathrm{\sigma}$
Division of a number with random error by a number without random error	x / c	$\mathrm{\sigma} / \mathrm{c}$
Addition of two numbers containing random errors	$\mathrm{x}_{1}+\mathrm{x}_{2}$	$\sqrt{ } \mathrm{\sigma}_{1}^{2}+\mathrm{o}_{2}^{2}$
Subtraction of two numbers containing random errors	$\mathrm{x}_{1}-\mathrm{x}_{2}$	$\sqrt{ } \mathrm{o}_{1}{ }_{1}+\mathrm{o}_{2}^{2}$

Raphex question

G74. A radioactive sample is counted for 1 minute and produces 900 counts. The background is counted for 10 minutes and produces 100 counts. The net count rate and net standard deviation are about \qquad and \qquad counts.
A. 800,28
B. 800,30
C. 890,28
D. 890,30
E. 899, 30

Raphex answer

G74. A radioactive sample is counted for 1 minute and produces 900 counts. The background is counted for 10 minutes and produces 100 counts. The net count rate and net standard deviation are about \qquad and \qquad counts/min.
D. The net count rate is:

$$
\left[\left(N_{s} / t_{s}\right)-\left(N_{b} / t_{\mathrm{b}}\right)\right]=[(900 / 1)-(100 / 10)]=890 .
$$

The net standard deviation, σ is:

$$
\left.\left[\left(N_{s} / t_{s}^{2}\right)-\left(N_{b} / t^{2}\right)\right]\right]^{1 / 2}=[(900)+(1)]=30 .
$$

